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ABSTRACT 

The influence of sloping sides and floors on the earthquake-induced hydrodynamic loads on a reservoir of rectangular 
planform is described. The corresponding two-dimensional boundary value problem in the vertical plane is solved for a 
harmonic base motion on the basis of linearized potential flow theory using a boundary integral equation method. The 
solution takes account of energy dissipation in the water by assuming this to occur at the free surface. The solution for a 
harmonic motion is used to estimate the maximum force on the reservoir for a specified earthquake response spectrum on 
the basis of a modal analysis. Parametric results are obtained in order to describe the influence of the side and floor slopes 
on the modal masses which are traditionally used in load calculations. A simplified procedure to take these features into 
account is recommended, and an example application is provided. 

INTRODUCTION 

In the design of water filled reservoirs and tanks, the prediction of earthquake-induced hydrodynamic loads is often an 
important requirement. Traditional approaches for estimating such loads have been outlined, for example. by Housner 
(1957) and in the AWWA (1984) and API (1993) standards. In general, these involve the use of an impulsive, or high 
frequency, effective water mass which accelerates with the container, together with an additional effective water mass 
which undergoes resonant motions at the lowest sloshing frequency. A closed-form solution for the case of a rectangular 
tank oscillating in a direction parallel to a pair of sides is well-known and has been used as the basis of this simplified 
approach. Other treatments of a rectangular tank include those given by. for example, Keulegan (1959) and Faltinsen 
(1974, 1978). 

In many instances, a reservoir has sloping sides and/or a sloping floor, and thus the influence of the sloping sides or floor 
on the hydrodynamic loads is required. The present paper describes such an assessment. The corresponding two-
dimensional boundary value problem in the vertical plane is solved for a harmonic base motion on the basis of linearized 
potential flow theory using a boundary integral equation method. The solution takes account of energy dissipation in the 
water by assuming this to occur at the free surface. The solution may be used to estimate the maximum force for a 
specified earthquake response spectrum. On the basis of this approach, parametric results are obtained in order to describe 
the influence of the side and floor slopes on the modal masses and mass distributions which are traditionally used in load 
calculations. A procedure to take these features into account is recommended, and an example application is provided. 

RECTANGULAR TANK 
Harmonic motion  

Initially, the closed-form solution for hydrodynamic loads on a rectangular tank is summarized, since this is eventually 
used to provide a simplified approach for load estimates on tanks with sloping sides and floors. The solution is obtained 
on the basis of assumptions that the reservoir is rigid, the water is inviscid and the oscillation amplitude is small (such 
that the corresponding boundary value problem is linearized). 

Figure 1(a) provides a definition sketch of a rectangular reservoir: a denotes the half length of the reservoir: w denotes the 
width, and h denotes the water depth. Thus, the total water mass m in the reservoir is given as m = 2pawh, where p is the 
water density. For a harmonic motion, the base velocity is given in complex notation as u(t) = U exp(-icot). where U is 
the velocity amplitude, 0) is the angular frequency, t is time, and i = The force can then be expressed in terms of a set 
of modal masses associated with the various modes of sloshing as: 

00 

F = icoU [m - mn  Gn(ico)] exp(-iwt) (1) 
n=1 

where mn  is the modal mass associated with the n-th sloshing mode. For the case of no energy dissipation. Gn(iu.)) is a 
frequency dependent function given as: 

(02 
Gn(ico) = 2 2 (2) 

(1)  

Here con  is the natural frequency corresponding to the n-th sloshing mode, and may be obtained from the equation: 
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co n  = k ng tanh(knh) (3) 

where g is the gravitational constant, and kn  are eigenvalues corresponding to cos(kna) = 0. and thus are given 11\ : 

(2n - 1)7t it 3 rc 5m 
2 2 ' 

k na =
2 2

for n = 1. 2. 3. ... (4) 
' ' • 

The modal masses are given in dimensionless form as: 

mn 2  Ftanh(knh)-1 

m (kna)2  L knh
(5) 

 

In the high frequency limit, the force given by Eq. 1 may be expressed as: 

F = icoU mo  exp(-icot) (6) • 

such that the high frequency effective mass mo  is given in terms of the modal masses as: 

00 

mo = m - mn ( 7 ) 
n=1 

It is possible to extend the above solution to the case of energy dissipation by assuming this to occur at the free surface 
(e.g. Faltinsen, 1978, Isaacson and Subbiah, 1991). 

Earthquake-induced motion  

In the case of a reservoir motion due to an earthquake, the motion is generally described by a specified earthquake response 
spectrum (e.g. Clough and Penzien, 1993). This describes the spectral acceleration Sa(con. C), which corresponds to the 
maximum acceleration arising in a lightly damped single degree of freedom system of natural frequency con  and damping 
ratio C and subject to a maximum ground acceleration of g, where g is the gravitational constant. In many cases (e.g. 
National Building Code of Canada, 1995), Sa(con, C) is expressed in a simplified form. 

The hydrodynamic load due to sloshing is analogous to a multi-degree of a freedom system. such that the maximum force 
associated with the n-th mode of sloshing is given as Fn  = mn um Sa(con.Cn )• where urn  is the maximum ground 
acceleration, but with an additional force component Fo  = mourn. corresponding to the high frequency effective mass 
mo, also present: 

• 

mo urn for n = 0 

Fn = (8) 

,Mn um  Sa(0)n,  cn) for n>_ 1 

The overall maximum force cannot be obtained directly from these components because of phase differences between the 
response at each mode. However, a common practice to estimating the overall maximum is to take this as the root of the 
sum of the squares of the maximum modal responses. In fact, in the traditional approach to estimating maximum forces. 
only the first sloshing mode is considered, so that the maximum force Fmax  is then simplified to: 

• 2 
Fmax = urn mo [m 1 Sa(0)  1 , ',1)1 (9) 

Thus, in Eq. 9 the force is estimated by the use of the impulsive or high frequency water mass mo  which accelerates in 
unison with the reservoir, together with an additional modal mass mi which undergoes resonant motions at the lowest 
mode sloshing frequency col . 

THEORETICAL FORMULATION 

The numerical solution for a rigid tank of rectangular plan. a sloping bottom and/or sides and containing an 
incompressible fluid is now described. Figure 1(b) shows a definition sketch of the problem under consideration. 
Initially, the reservoir is considered to undergo a sinusoidal base motion with velocity u(t) which is given in complex 
notation as u(t) = U exp(-iwt). A fixed Cartesian coordinate system (x. y. z) is used. with the vertical coordinate z 
measured upwards from the bottom of the tank. and x in the direction of the base motion. 

The fluid is assumed to be inviscid and the flow irrotational. so  that the flow can he described by a velocity potential cl) 
which satisfies the Laplace equation within the fluid region. and is also subject to dynamic and kinematic conditions at the 
free surface, and to kinematic conditions at the bottom and sides of the container. The amplitude of the base motion and 
the resulting free surface elevation in the container are assumed to be sufficiently small for a linearization of the free 
surface conditions to be justified, and for the kinematic condition at the container walls to be applied at the equilibrium 
position. Because of the linearization, the velocity potential is harmonic in time and proportional to the velocity 
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amplitude U. Thus the velocity potential D may be written in the form (to = U 4(x,z) exp(-iwt). The potential function 
(1)(z,x) satisfies the Laplace equation within the fluid region and is subject to the following boundary conditions: 

_ (020 g 

az

0  

ao  
an nx  

in which S denotes the contour of the reservoir boundary in the vertical plane, including the sides and bottom: n denotes 
distance in a direction normal to the container surface and directed into the fluid (see Fig. 1(b)); and nx  is the direction 
cosine of the normal vector n with respect to the x direction. Equation 10 derives from the linearized free surface 
conditions, while Eq. 11 is the kinematic condition at the container bottom and wall 

The motion of a real fluid gives rise to damping which may be associated with various forms of energy dissipation. As 
an approximation which enables the potential solution to be developed, the dissipation is assumed to occur only at the 
free surface and is introduced through a modification to the dynamic free surface boundary condition (e.g. Faltinsen. 1978): 

- (co2  + icov)(1) + g aa(I)
z 
 = 0 at z = d (12) 

where v is a damping parameter which may be related to a specified damping ratio C. 

A boundary integral method involving Green's second identity is used as the basis for a numerical evaluation of the 
potential 4. An analogous solution to the case of ocean wave interaction with a long horizontal cylinder was described by 
Isaacson and Nwogu (1987). The second form of Green's theorem may be applied over a closed surface containing the 
fluid region and bounded by the container sides and bottom and the still fluid level. This relates the values of the potential 
(1)(x) at a point x on the boundary (approached from within the fluid) to the boundary values of the potential (1) and its 
normal derivative 4/an over the contour S. This can be expressed as: 

a
'

a(1)  (1) (x) , —1 
j [4)(x) 

G  
--(x x) — G(x,X) 

an 
(X)]dS (13) 

an  

The vector x denotes a point (x,z) on the boundary S, taken to approach the boundary S from within the fluid, X denotes 
the point (X,Y) on the surface S over which the integration is performed, and n is measured from the point X. Also. 
G(x,X) is a suitable Green's function for a point source located at X, and dS denotes a differential area on S, all taken in 
the vertical plane. The Green's function G is required to satisfy the Laplace equation and is singular at the point 
x = X. Thus G is given by: 

G = ln(r) (14) 

where r is the distance between x and X. 

The integral equation, Eq. 13, together with the boundary conditions Eqs. 10 and 11 are then used in a numerical procedure 
to obtain the function (1)(x). The contour S is divided into a number of small straight segments, each of length AS and 
Eq. 13 reduces to a set of N linear equations for 4  which are solved by a standard matrix algorithm. 

Once the values of (1) around S have been obtained, the various quantities of engineering interest may readily be obtained. 
In particular, the free surface elevation l, defined relative to z = d, may be obtained in terms of (1) from the dynamic free 
surface boundary condition: 

iwU  
i v 

[1 + —
co 

(1)(x,d) exp(-iwt) (15)  rl(x,t) — 

The hydrodynamic pressure p within the fluid is given by the linearized Bernoulli equation as: 

p(x,t) = icopU 4(x) exp(-icot) (16)  

The total horizontal force F acting on the reservoir and in the direction of the base motion may be obtained by an 
appropriate integration of the dynamic pressure. This gives: 

F(z,t) = iwpU [ 5 (1)(x,z) n x  dS1 exp(-ie)t) 

at z = d (10) 

at S (11) 

(17)  
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RESULTS AND DISCUSSION 

Comparison with closed-form solution  

In order to validate the approach described in the preceding section, a corresponding computer program has been developed 
and was initially used to provide a comparison with the closed-form solution for a rectangular reservoir with vertical sides 
and a horizontal bottom (e.g. Isaacson and Subbiah, 1991). 

A comparison of the numerical results with the closed-form solution was carried out for the relative modal masses m0/m 
and ml/m. In the computations, 60 and 120 segments were used in turn to describe the boundary S. The agreement(not 
shown) was found to be very good overall. 

Reservoir with steep sloping sides  

The case of a reservoir with relatively steep sides inclined at an angle 13 from the vertical and extending from the bottom to 
the still water level (see Fig. 1(c)) is now considered. The results from the numerical model are used to develop and 
examine a possible simplification to the prediction method in which the closed-form solution for a rectangular reservoir is 
applied to obtain the required masses mo  and ml, provided that the effective water depth is unaltered and the effective half-
length of the reservoir is appropriately selected. Numerical results have been obtained for side slope angles 13 = 0'. 10' and 
20°, and the results have been compared with the closed-form solution using alternative definitions of the effective half-
length a. 

Figure 2 shows results for the relative modal masses mo/m and m i/m as functions of relative reservoir size a/h for side 
slopes, 13 = 0°, 10° and 20°. In the computations, 60 - 120 segments were used to describe the fluid boundary S. The 
closed-form solution for the case p = 0° is also shown in the figure. The results indicate that the sloping sides lead to a 
slight increase in mo/m and a slight decrease in m i/m relative to a reservoir with vertical sides. It turns out. however, 
that the use of a simple effective half-length is not obvious for this case and the best comparisons for both mo/m and 
m i/m were obtained with the effective half length taken as the actual half length a at the still water level. It is noted that 
although the use of the closed-form solution for a reservoir with vertical sides will tend to overestimate mo/m and 
underestimate m i/m for a reservoir with sloping sides, these effects will tend to cancel in estimating the maximum force 
given by Eq. 9; and in many practical situations where mo  dominates the response. these values are suitable for 
estimating the maximum force on the walls of a reservoir with sloping sides using Eq. 9. 

Reservoir with a gently sloping floor 

In the case of sides with relatively low slopes extending some distance up from the reservoir bottom and intersecting the 
vertical walls (see Fig. 1(d)), the half width a at the still water level is selected, while the effective depth should be reduced 
as necessary. It is expected that the results for a rectangular reservoir may still be applied, such that the effective depth is 
selected so as to give rise to a water mass which is the same as the actual water mass. Thus the effective depth, denoted 
h', is taken as: 

h' = h - 
2 b
a cotf3 (18) 

2 

where b is the height of the sloping side (see Fig. 1(d)). 

Figure 3 shows numerical results for the relative modal masses mo/m and m i/m as functions of relative reservoir size ti/h' 
for a floor slope 13 = 10° and relative maximum floor elevations b/h = 0.0. 0.1 and 0.2. The closed-form solution based 
on the use of the effective depth h' given by Eq. 18 is also shown in the figure. The results indicate that the use of the 
effective depth appears to be reasonable. 

Apart from the selection of an equivalent water depth. it is possible that the water flow over the sloping sides may give 
rise to an increase in the overall loads on account of a surging flow over the sloping sides. This may become particularly 
significant when the above procedures are applied for slope angles [3 which are outside the ranges indicated above. In order 
to assess this in a general way, it is instructive to consider the analogous situation of ocean wave interactions with 
sloping seawalls. It is known that ocean wave runup on sloping seawalls is larger than for vertical walls. The maximum 
water surface elevation (runup) increases as the wall becomes more inclined to the vertical. eventually reaching a 
maximum of about twice the runup for a vertical wall when the bottom slope [3 is about 20' - 30' and when the slope 
extends up to the water surface. This limit is associated with the onset of wave breaking over the slope. 

Example Application  

Finally, it is of interest to illustrate a typical application of the preceding results in relation to a reservoir with a sloping 
floor. The particular case sketched in Fig. 1(e) is considered. The reservoir has a maximum water depth h = 8 m. a length 
at the still water level 2a = 50 m, a width w = 25 m. and sloping floors with a maximum rise h = 3.5 m over a horizontal 
distance of 8.0 m (the slope 13 = 23.6°). The base motion is assumed to occur in a direction parallel to the pair of longer 
sides and to correspond to the earthquake spectrum given in the National Building Code of Canada (1995 i with a damping 
ratio = 0.005 and with a maximum acceleration urn  = 0.08g. For this case, m = 9.30 x 106  kg. On the basis of Eq. 
18, the equivalent depth h' is estimated as 7.44 m. Thus Eqs. 5 and 7 lead to mo/m = 0.162 and m 1 /m = 0.756. which 
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correspond to mo  = 1.50 x 106  kg and m 1 = 7.03 x 106  kg. Therefore, using Eq. 9, the maximum force is estimated to 
be 1.32 MN. On the other hand, if the equivalent depth is taken as 8 m, this would instead lead to a maximum force of 
1.41 MN, which is 6.8 % higher than the proposed result. A computation based on the full numerical method confirms 
the former value, and thus indicates that ignoring the effect of a sloping bottom overpredicts the forces due to sloshing. 

SUMMARY AND CONCLUSIONS 

The influence of sloping sides and floors on the earthquake-induced hydrodynamic loads on a reservoir of rectangular 
section is described. The corresponding two-dimensional boundary value problem for a harmonic base motion is solved 
on the basis of linearized potential flow theory using a boundary integral equation method. The solution takes account of 
energy dissipation in the fluid by assuming this to occur at the free surface. The solution is used to estimate the high 
frequency and sloshing masses mo  and ml, and to determine the influence of side and floor slopes on the modal masses. 
A procedure to take these features into account is recommended, and an example application is provided. 
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Fig. 1. Definition sketches. (a) rectangular reservoir, (b) reservoir with arbitrary section. (c) reservoir with steep 
sides, (d) reservoir with sloping floors, (e) example reservoir. 

Bulletin of the Seismological Social of 

Can. J. Civil Engrg.. 

725 



(a) 
(b) 

mo/m 

0.0 2.0 4.0 6.0 
6.0 

a/h' 

0.8  

0.6  

m i im 

0.4  

0.2  

0.0  

0.0 2.0 4.0 

a/h' 

•Pi 

1.0 

0.8 

0.6 - 

0.4 

0.2 

0.0 

1.0 

0.8 

 

0.8 

0.6 

 

(a) (b) 

0.6 

mo/m 
0.4 

0.2 

0.0 

  

 

0.4 

0.2 

0.0 

 

   

     

0.0 1.0 2.0 3.0 4.0 5.0 0.0 1.0 2.0 3.0 4.0 5.0 

a'/h a'/h 

Fig. 2. Relative masses mo/m and mi/m as functions of relative reservoir size VII for a rectangular reservoir with 
various side slopes 13.  , closed-form solution for 13 = Cr; numerical model: •. 13 = 0'; 0. f3 = 
10°, 0, 3 = 20°. (a) mo/m, (b) mi/m. 

Fig. 3. Relative masses mo/m and ml/m as functions of relative reservoir size a/h.  for a rectangular reservoir with 
various floor slopes 13 and relative floor elevations b/h.  . closed-form solution for p = 0'. b/h = 
numerical model: •, p = 0°,b/h = 0; o, p = 10°, b/h = 0.1; 0.13 = 10°. b/h = 0.2. (a) mo/m. (h) m /m. 
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